If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3^2-2*3+u=(3^3/3*8)(2)+u
We move all terms to the left:
3^2-2*3+u-((3^3/3*8)(2)+u)=0
Domain of the equation: 3*8)2+u)!=0We add all the numbers together, and all the variables
u!=0/1
u!=0
u∈R
u-((3^3/3*8)2+u)+3=0
We multiply all the terms by the denominator
u*3*8)2+u)-((3^3+3*3*8)2+u)=0
Wy multiply elements
24u^2*8+72u*8=0
Wy multiply elements
192u^2+576u=0
a = 192; b = 576; c = 0;
Δ = b2-4ac
Δ = 5762-4·192·0
Δ = 331776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{331776}=576$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(576)-576}{2*192}=\frac{-1152}{384} =-3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(576)+576}{2*192}=\frac{0}{384} =0 $
| (9-2x)=11 | | 1-5n=-24 | | t^2-60t+600=0 | | 5x-8+7x-12=10x-2 | | 8(x-3)+8=5x=22 | | 13y^2+21y=-5y^2+22 | | (8-4x)=40 | | f(4)=1/5^4 | | 13y^+21y=-5y^2+22 | | 810=24x+45 | | 135=-3(-5x-5) | | 1d+4=6d=3 | | t^2-48t+480=0 | | (X-5)-2=-2x | | 8x+7-3x=-13 | | 2(4-2r(=-2(r+5) | | 3(n+4)=0.5(6n-4) | | -6/7x=-37.2 | | X-11x-3=10x-1-2 | | 2x+9=3x+24 | | -2=-2(x+3) | | -6/7x=37.2 | | -6/7x=37/2 | | 3x-2(-2x-3)=2 | | 2/5n-2=-4 | | 3x-20=55 | | 20z-5-12z=10z+18 | | 4(2+x)+1=0.6x-2.1 | | 5^x=2x+1 | | 19-3z=9-12 | | 7.4s=20.4 | | 10x-13=2x+3 |